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Summary 

Plasma magnetic control schemes typically consist of a cascade control scheme with a plasma current and shape 

controller (CSC) in the outer loop and a vertical stabilization (VS) controller in the inner loop. The main challenges to 

tackle are: suppression of plasma shape transients after disturbances specific to tokamak reactors; robustness to changes 

in the plant dynamics; best possible use of the available chamber volume, so that the plasma is placed as close as 

possible to the plasma facing components; and tight control complying with the power supply and gap constraints. 

Model predictive control (MPC) is an advanced process control approach for dealing with constraints, already 

established in a range of industries involving multivariable processes with slower dynamics.  

The aim of the FMPCFMPC project is to design a practically feasible MPC controller for the ITER CSC, which will be 

able to improve control in the presence of constraints on process signals.  

Part I of this report expands the first deliverable D1 "A set of reduced-order models and a state-estimation scheme for 

ITER plasma shape and current control", where the simulation setup was defined, a set of models for control design and 

analysis was prepared, and a state-estimation scheme for the MPC CSC control was made. The section on the 

implementation of several MPC controller variants is added. In comparison to our previous prototype versions of ITER 

CSC, the described controller includes set-point tracking and is able to consider a larger number of gaps describing the 

plasma boundary. Tuning of the controller is provisional only, because the final structure should be chosen considering 

the abilities of the optimization algorithms, which are still under investigation.  

Part II describes a parallel effort of examining efficient fast quadratic programming (QP) methods suitable for the on-

line solution of MPC optimization problems which are being repeatedly solved at each sample time of the CSC control 

loop. A survey of the available QP methods is given, with emphasis on first-order methods, which have been recently 

considered as prime candidates for fast online MPC control. Although they do not posses excellent theoretical 

convergence properties, they may be very fast at finding medium-accuracy solutions, which are sufficiently accurate for 

closed-loop control. In addition, they are relatively simple, and their convergence properties may be certified. A 

description of three available open-source fast QP solvers is made. A case study of a prototype version of ITER CSC 

control based on the QP solver QPgen is presented, which has shown a five-fold speed-up compared to the state-of-the-

art commercial solver CPLEX, with peak computation times around 10 ms, which is already considered sufficiently fast 

for the 100 ms sample time estimated to be suitable for the ITER CSC control loop.  
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Part I: Development of the MPC platform  

1 Introduction 

In a magnetically confined fusion reactor, the plasma current and shape controller (CSC) is the component of plasma 

magnetic control (PMC) that determines the voltages applied to the poloidal field coils, to control the coil currents and 

the plasma parameters, such as the plasma shape, current, and position. In case of elongated, and hence vertically 

unstable, plasmas, the CSC acts on the system already stabilized by the inner vertical stabilization (VS) controller. The 

task of PMC is to maintain the prescribed plasma shape and plasma-wall distances (gaps), in presence of disturbances, 

such as vertical displacement events (VDE), H-L transitions or edge-localized modes (ELM), and to changes of local 

dynamics in different operating points [1, 2]. In order to achieve high performance, control methods that would improve 

the performance near the vessel boundaries and the actuator constraints are desired. 

Model Predictive Control (MPC) is an established advanced process control approach in the process industry. It has 

gained wide industrial acceptance by facilitating a systematic approach to control of large-scale multivariable systems, 

with efficient handling of constraints on process variables and enabling plant optimization [3]. These advantages are 

considered beneficial for CSC, and potentially also for other control systems of a tokamak. The main obstacle to using 

MPC for control of such processes is the restriction of the most relevant MPC methods to processes with relatively slow 

dynamics due to the long achievable sampling rates, typically needed for the on-line optimization. However, speeding 

up MPC has been a topic of intensive research recently [4, 5, 6].   

Modern MPC methods are based on state-space models, where model order is an important consideration. Plasma 

modelling procedures based on first principles result in models of very high orders [9], which are not convenient for 

control, and model reduction techniques are required to obtain models used for MPC design, in order to reach a 

manageable computational demand and numerical conditioning. The model order cannot be reduced arbitrarily, because 

it is important that the models retain a sufficiently accurate description of model dynamics; on the other hand, a high 

model order may also result in over-fitting to specific local dynamics that may actually result in poor robustness to 

changes of operating conditions. A set of models for different operating points of the ITER scenario is required for 

assessment of robustness of the controller to model inaccuracy.  

 An MPC scheme involving a steady-state target calculator (TC) and a dynamic controller (DC) for transient dynamics 

is being considered for implementation. For such MPC schemes it is particularly important that the model is also 

accurate in the low-frequency region.  

Plasma models involve a large number of states that are not measurable. In state-space MPC approaches it is 

commonplace to use a linear observer or state estimator (Kalman filter) to estimate model states from the applied inputs 

and the measured outputs. Conceptually it would be appropriate to use a moving-horizon state estimator, which may 

also consider constraints just like the MPC controller, however the constrained state-estimation task is computationally 

even more challenging than constrained control.  

Due to the superconductive actuators, the plasma models for CSC control contain integrators (i.e., poles at the origin), 

which require special attention in the estimator implementation. Simple disturbance modelling using an open-loop 

observer with an output step disturbance model, which is frequently employed in simple industrial MPC methods, 

results in internal instability of the system, where internal signal values in the model may slowly diverge and eventually 
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reach overflow. This problem is avoided by using a closed-loop estimator and by a proper choice of a disturbance 

model.  

This report presents the concept of the plasma control simulation setup for the ITER CSC control problem, including a 

set of plasma models used for both plasma linear simulations and controller design, a set of disturbances expected to 

affect CSC control, a reference "conventional" control scheme including VS scheme based on [8], also intended to be 

used with MPC, and an alternative CSC based on singular perturbation decomposition (SPD) [7], and a state estimation 

scheme required for MPC CSC implementation.  

2 Magnetic plasma control simulation setup 

2.1 Simulation models 

The simulations and controller design methods are based on high-order local linear dynamical models of the tokamak 

plasma from CREATE-L or CREATE-NL [9, 10] nonlinear equilibrium codes, at several different operating points for 

ITER plasma Scenario 1. The models are listed in Table 1. The model codes coincide with the time into the scenario. 

Initially, three different models were considered. Additional models were added in order to examine the effects of rapid 

changes of dynamics during L-H and H-L transitions, where closed-loop control with the reference control scheme is 

used. They may be used to assess the validity of simulation of such disturbances using a single linear model. The 

control design may be eventually validated with nonlinear simulations with the CREATE-NL model, but linear models 

are required for nominal control design and for fast performance assessment (nonlinear simulations are time consuming 

and may be affected by numerical issues). 

Table 1.  Local linear dynamic models. 

Model code Disturbance Growth rate (s
-1

) 

t80 No disturbance 9.1 

t520 No disturbance 2.9 

t079d50 L-H transition 9.3 

t080d50 L-H transition 8.6 

t081d50 L-H transition 7.8 

t083d00 L-H transition 5.5 

t085d00 No disturbance 5.0 

t090d00 No disturbance 3.6 

t529d00 H-L transition 3.5 

t530d50 H-L transition 6.5 

t531d00 H-L transition 10.1 

t531d50 H-L transition 10.1 

t532d00 H-L transition 6.8 

t532d50 H-L transition 6.5 

 

The models may be used to simulate disturbances specific to tokamak reactors. A Vertical displacement event (VDE) of 

given amplitude may be simulated by initializing the simulation with an appropriate non-zero initial state of the plasma 
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model. Several other types of disturbances may be simulated by injecting pre-computed trajectories of p and li 

exogenous inputs to the plasma model: Minor disruption, Uncontrolled ELM, L-H transition, H-L transition. Some of 

these disturbances are relevant only at specific time into the pulse, therefore with specific local linear models.   

2.2 Reference control scheme 

As a reference control scheme, the Matlab/Simulink simulation scheme "v2d0" of CREATE is used. The scheme is 

displayed in Fig. 1, and the Plasma Model block is expanded in Fig. 2. The shown scheme is slightly modified to use 

the "absolute" values of the control signals rather than the "delta" differential values, relative to the operating point of 

the local linear model.  

 

Fig. 1. Reference simulation control scheme "v2d0". 
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Fig. 2. Block PlasmaModel of the scheme "v2d0". 

 

The scheme includes:  

 the plasma/circuits linearized model (the state-space block "Plasma Model"), 

 several sum nodes to append the operating-point offset to the outputs of the plasma linear model, in order to 

generate "absolute" signal values,  

 a simplified model of plasma diagnostics for the plasma vertical velocity vp and position zp (a first-order dynamic 

lag filter with the time constant equal to 710
–3

 s is considered),  

 simplified models of the power supplies for the superconductive (SC) coils VS1 and for the in-vessel (IV) ohmic 

coils VS3 in the block "Power Supplies Model" (a first-order dynamic lag with the time constant equal to 7.510
–3

 

s; a delay equal to 2.510
–3

 s; saturations ±6 kV and ±1.5 kV for VS1 and VS3, respectively),  

 simplified models of the main power supplies in the block "Power Supplies Model" (saturations ±1.5 kV, except 

for VCS1 ±3 kV, and  first-order dynamic lag with the time constant equal to 0.015 s and a delay equal to 0.015 s), 

 the inner cascade control loop of the VS system in the block "Vertical VS3 controller", which aims at vertically 

stabilizing the plasma column, 
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 the outer cascade control loops of plasma current and shape control, comprising the blocks "Current Controller", 

"Plasma Current Controller" and "XSC Controller", 

 blocks enabling the simulation of vertical displacement events (VDE), using a corresponding plasma model initial 

state, and H-L transitions, by injecting recorded profiles of  p and li  (BPLI) [11].  

The simulation solver ode23tb is used, with relative tolerance 10
–5

.   

3 Vertical stabilization  

For vertical stabilization, an approach similar to the one proposed in [14] is used both in the reference scheme and with 

the MPC controller.   

The VS controller acts on the control variable uVS  = [uVS,1 uVS,2]
T
, where:   

-  uVS,1 is the voltage applied to the IV coils VS3,   

-  uVS,2 is the voltage applied to the SC circuit VS1,   

while it attempts to drive to zero the controlled inputs yVS  = [yVS,1 yVS,2]
T
, where    

-  yVS,1 is the VS3 power supply current,   

-  yVS,2 is the plasma vertical velocity vp.   

 The following feedback transfer function matrix is used 


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
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



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



01.0

1)6/1(

7000175

1)6/1(

07.000175.0

),()( SOFVSSOFVS s

s

s

s

tt KyKu   (1)     

4 MPC Plasma current and shape controller (CSC)  

The CSC output VPF is the vector of the 11 voltage requests to the main power supply (main converters).  

The CSC inputs include:  

- the currents in the 11 superconductive coils IPF. 

- the plasma current Ip,  

- the vector of controlled geometrical descriptors (gaps) g.   

Fig. 3 displays the simulation scheme with the MPC CSC. The MPC CSC is contained in a single block 

"predictiveCSC", which is shown expanded in Fig. 4. The MPC controller in the block "MPT Controller" is a tracking 

controller that drives the controlled outputs (CSC inputs IPF, Ip, and g) to their set-point values. It is based on a reduced-

order discrete-time state-space model. The states of such models do not have physical meanings, and are therefore 

estimated using the Kalman filter kfCSC
1
, which computes state estimates (xhat) based on output measurements and 

past controller outputs. Such a scheme may also be used with a LQ optimal controller.  

                                                           

1 The kalman filter kfCSC is split into two blocks, kfCSC_ABC and kfCSC_D, to avoid a false algebraic loop warning of Simulink. 
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Fig. 3. Simulation control scheme with MPC CSC. 

 

Fig. 4. Block "predictiveCSC". 

4.1 Model preparation for KF and MPC 

The nominal design of MPC and state estimation is based on the nominal plasma model t90 in the continuous-time 

form. A sequence of steps is required to prepare the model in a suitable form for MPC:  

 A state-space model with the appropriate inputs and outputs for the simulation scheme is formed.  
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 For controller design, plasma resistance is set to zero, to avoid issues with model reduction.  

 The vertical velocity output required for VS is appended.  

 The simplified models of the power supplies and sensors (diagnostics) are appended. 

  The VS feedback is added to stabilize the unstable pole. The computed closed-loop dynamics is taken as open-

loop dynamics for the outer CSC control.  

 The subsystem from the process inputs uCSC  = VPF to the outputs yCSC  = [IPF Ip g]
T
 for CSC is extracted. 

 Any possible dynamic artefacts at very low frequencies due to numerical noise in computations must be removed 

using the stabsep Matlab function, because they have adverse effects on model reduction and cause problems 

with the Target Calculator design. Clean integrating dynamics due to the superconducting coils are expected from 

all 11 process inputs uCSC.  

 Model reduction is used to decrease the model order as much as possible without affecting the performance. 

Unfortunately, it is difficult to choose the appropriate order in advance, because the choice may depend on KF and 

MPC tuning - a better model may be required for a higher bandwidth. The effect of order reduction is illustrated 

with the Bode diagram in Fig. 5. Model order 60 is chosen for the moment.     
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Fig. 5. Bode diagram of a subsystem of the unreduced model (black) and the reduced-order models with 129 

(blue), 80 (magenta), 60 (green), 40 (red), and 20 states (cyan). A subsystem from inputs 1, 2, 10, and 11 to 

outputs 1, 2, 10, 11, 12, 13, and 14 is shown. 
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 The base model for the MPC CSC  0CBA ,,, CSCCSCCSC
 is finally obtained with model conversion to discrete time 

with the sampling time Ts = 0.1 s, assuming zero-order hold.     

 The CSC should facilitate offset-free control of Ip and g to zero with integral action, set-point tracking. In our 

implementation, integral action is based on the disturbance estimation (DE) concept [13]. For the estimation of 

asymptotically non-zero disturbances, the base model is augmented with DE integrators at the outputs which 

require offset-free control. Consider the discrete-time state-space model  

   
)()()(

 ),()()()1(

kkk

kkkk

vCxy

wBuAxx



     (2) 

where w and v are white noise signals to the state and output, respectively. DE integrator states d are appended to 

the state x, so that the augmented state is xa = [x
T
 d

T
]

T
. A white-noise disturbance signal wd acts on the state d, so 

that the augmented state disturbance signal is wa = [w
T
 wd

T
]

T
. Hence, the augmented system is   
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and is rewritten as 
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The steady-state Kalman filter (KF) 
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is used for state estimation with the disturbance-augmented model, where MK is computed via the steady-state 

solution of the Riccati equation from the covariance matrices QK = E{wawa
T
} and RK = E{vv

T
}. The KF is used in 

the sense of an observer, where the diagonal elements of QK and RK are used as tuning parameters to achieve 

desired dynamics.  

 Another form of model augmentation is the velocity form (possibly combined with tracking), which is used to 

prevent offset due to the control cost when the control signal is non-zero at the steady-state.  

For the velocity form, the disturbance-augmented system  0CBA ,,, aaa
 is further augmented. In the velocity-

augmentation, the input signal variation u becomes the new input; therfore the state expands to xav = [xa
T
 u(k–

1)
T
]

T
, and the new output is yav = [ya

T
 u(k–1)

T
]

T
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where Da = 0. The system (6) can be rewritten as 
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Then, the MPC controller is built using the Multi-Parametric Toobox (MPT) [4] in the output-cost formulation, 

with the cost function  
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where the diagonal elements of the cost matrices for the outputs QC,y and the control moves RC,u are used as 

tuning parameters, and N = 30 is the prediction horizon length. The control law is obtained by minimising J with 

respect to the vector of the future control moves u~  subject to constraints (currently, only control amplitude 

constraints umin ≤ u ≤ umax are used). To reduce the computational demand, the number of free control moves is 

reduced from 30 to 3 using the "move blocking" technique to three intervals of lengths [2 2 26].  Due to the finite 

horizon length, the control law is computed as a least-squares problem in the unconstrained case, or as a quadratic 

programming problem in the constrained case [13].  

4.2 Sample time 

For discrete-time control algorithms, including the majority of practical forms of MPC, a suitable sample time Ts must 

be chosen. Controllers may be designed with a relatively wide range of Ts, and different rules of thumb are practiced.  

For instance, one may choose Ts to be around a tenth of the settling time of the open-loop system, so that combined with 

the choice N = 10 the prediction horizon roughly covers the open-loop settling time. Such choice tends to result in 

relatively long sampling times; nevertheless, the resulting nominal closed-loop response to set-point changes may be 

quite comparable with conventional controllers based on continuous-time design (e.g., PID).  

In practical control systems, the controllers are often expected to suppress fast-acting disturbances. The plasma CSC 

may be designed with Ts = 1 s or more, however its response to disturbances will appear sluggish in case when 

disturbances are not well aligned with sample hits. By using a shorter sample time, the disturbance response generally 

improves, but eventually a plateau is reached due to system dynamics. For the plasma system it was observed that Ts 

around 0.1 s is needed to avoid a negative impact of sampling on disturbance response.  

Generally it is possible to implement discrete-time controllers with faster sampling times. At much faster sampling 

times, numerical issues due to finite-accuracy mathematic operations may be encountered. With MPC controllers that 

feature handling of constraints, the computation time required for on-line optimization is an obvious obstacle. Another 

issue is that for a meaningful definition of the cost function, the prediction horizon should cover a certain time period, 

therefore shortening of Ts requires an increase of N (even infinite-horizon MPC formulations which do not need a high 

N for a meaningful cost function formulation still require it for a timely response to anticipated constraints violations).   

4.3 KF tuning 

The KF is tuned by specifying the covariance matrices QK and RK . In theory, these two matrices may be tuned by 

estimating noise covariances E{wawa
T
} and E{vv

T
}, respectively. However this is infeasible with a not-yet-existing 

system. Another issue is that such an optimal filtering approach leads to filtering which is mathematically optimal with 

respect to the defined quadratic norm and the type of noise present in the system, however the impact of this optimality 

on actual control requirements are unclear. Furthermore, it is well known that the design of an optimal filter (KF) and 

its dual LQ optimal controller leads to favourable properties of each and good overall performance as long as the 

certainty equivalence assumption holds; however the composite system may not be robust to modelling error. Loop 

Transfer Recovery (LTR) is one known approach to overcome the robustness issue by either matching KF tuning to the 

LQ controller or vice versa; however, it is not clear how to apply it with augmented models. Therefore, independent 
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tuning of the KF is possible only at the initial stage, while the final phase is carried out together with tuning the 

controller, where cross-validation on a set of different actual models is essential.  

In practice, manual tuning is often used, using identity matrices or more general diagonal matrices. Simple identity 

matrices lack tuning flexibility, while considering diagonal elements individually results in an excessive number of 

tuning parameters. A compromise may be achieved by considering the structure of the state and output vectors and 

blocking related parameters together. The output vector is known to comprise elements of IPF, Ip and g which have 

different properties and value ranges. The state vector also has a particular structure when using the modal form. The 

last 11 elements are inherent integrating dynamics, while the others represent transient stable dynamics; the appended 

modes are integrating disturbance modes at the respective outputs. So, one possible structure of the covariance matrices 

is    
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with 6 tuning parameters k1 ... k6, where Z = diag(B
T
B). Using the values k1 = 1, k2 = 1, k3 = 10

-1
, k4 = 10

6
, k5 = 10

2
,  

k6 = 10
2
, the output estimates shown in Figs. 7 - 11 were obtained (dotted lines in displacement values). The simulations 

of a "Minor disruption" event were carried out with a variant of the control scheme with CSC in open loop, with the 

MPC controller removed as shown in Fig. 6, with only the VS control loop closed.  

 

Fig. 6.  Block "predictiveCSC" with KF state estimation only (no MPC controller). 
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Fig. 7. Minor disruption simulation: SC&PF coil currents. Estimates are drawn with dotted lines on the lower 

graph only (displacement values). 

 

Fig. 8.  Minor disruption simulation: Plasma current. Estimates are drawn with dotted line on the lower graph 

only (displacement values). 
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Fig. 9.  Minor disruption simulation: strike points. Estimates are drawn with dotted lines on the lower graph only 

(displacement values). 

 

Fig. 10.  Minor disruption simulation: Outboard gaps. Estimates are drawn with dotted lines on the lower graph 

only (displacement values). 
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Fig. 11.  Minor disruption simulation: Inboard gaps. Estimates are drawn with dotted lines on the lower graph 

only (displacement values). 

A very similar approach is used when tuning MPC controller cost matrices QC,y and RC,u. 

4.4 MPC CSC controller variants 

Several variants of the MPC controller have been investigated, with the aim of finding a scheme with desirable control 

performance and suitable for numerically efficient controller implementation.  

4.4.1 Initial MPC CSC prototype 

An initial MPC CSC prototype scheme was available at the start of the project already [33]. In this scheme the 

controller regulates the signal deviations from the nominal operating point to zero, without support for set-point 

tracking. It is made for a fixed selection of 6 pre-selected gaps in the vector of geometrical descriptors g (specifically, 4 

gaps and 2 strike-points). A different set of CREATE plasma models, with respect to the one introduced in Table 1, 

were used in the design.  

This prototype without further modifications, except for complexity reduction techniques, was being used in the parallel 

effort of examining candidate fast online QP solvers.  

4.4.2 MPC CSC with full output vector 

The basic version of the new MPC controller concept (based on the new set of plasma models, designed for a scheme 

with "absolute" signals, and with set-point tracking support) as described in Section 4, uses the full output vector y 

including the vector g with 29 geometrical descriptors. While it is possible to design a controller with many more 

controlled outputs than manipulated variables, it is known that offset-free performance in the steady state is not possible 

and that tuning of such controller is difficult, as the offsets determined by minimizing the cost functions may not 
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coincide with practically sensible performance – it is difficult to tune trade-offs between different offsets and constraint 

violations. In addition, there are numerical issues in the practical design of such a controller with some MPC design 

libraries (MPT Toolbox) due to the large matrices involved.  

4.4.3 MPC CSC with the output vector reduced via manual selection  

The simplest form of output vector reduction is achieved by introducing an output selection matrix Msel (containing 

mostly zeros, and ng elements equal to 1, one in each row) which maps a certain number of gaps ng to from g to the 

vector of selected gaps gsel  

gMg selsel      (10) 

Subsequently, the controller is designed for the output vector yCSCsel  = [IPF Ip gsel]
T
 instead of the original output vector 

yCSC  = [IPF Ip g]
T
. In the base model  0CBA ,,, CSCCSCCSC

, the matrix CCSC is replaced with a reduced matrix CCSCsel, 

which only retains rows corresponding to the gaps included in gsel. The modified controller block is shown in Fig. 12, 

where Msel is used in the gain blocks "gtosvd". 

  

Fig. 12. Block "predictiveCSC" with output vector reduction. 

If the choice of the gaps is the same as in the initial scheme from Section 4.4.1, very similar performance may be 

obtained.  

4.4.4 MPC CSC with the output vector reduced via manual selection and averaging  

A generalization of the simple concept from the previous section is made by replacing individual gaps with weighted 

sums (averages) of neighbouring gaps. With this approach, a much larger number of gaps are being considered by the 

controller, despite the controller having a smaller number of virtual outputs. For instance, the vector gsel and the matrix 

Msel can be generated by averaging signals using the following list 
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gsel{1} = 1:12;    % inboard gaps 

gsel{2} = 13:15;  % top gaps 

gsel{3} = 16:19;  % top outboard gaps 

gsel{4} = 20:27;  % bottom outboard gaps 

gsel{5} = 28;       % strike point GAP25 

gsel{6} = 29;       % strike point GAP21 

Here, in the base model  0CBA ,,, CSCCSCCSC
, the matrix CCSC is replaced with a reduced matrix CCSC, in which the rows  

corresponding to the averaged signals are obtained by averaging the corresponding rows of CCSC. The controller 

simulation block in Fig. 12 is used.  

Figures 13-17 show the resulting simulation response to Minor disruption; tuning is provisional, because the controller 

concept is not final yet.  

 

Fig. 13.  Minor disruption simulation: SC&PF coil currents.  
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Fig. 14.  Minor disruption simulation: Plasma current.  

 

Fig. 15.  Minor disruption simulation: strike points.  
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Fig. 16.  Minor disruption simulation: Outboard gaps.  

 

Fig. 17.  Minor disruption simulation: Inboard gaps.  

4.4.5 MPC CSC with SVD-based output space reduction 

In this scheme, the idea is to apply singular values decomposition (SVD) to Cg, the part of the output matrix CCSC 

producing the geometrical descriptors g 
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T

000 VSUCg      (11) 

Then, a truncated SVD approximation using the first ng singular values  

T

1111 VSUCg      (12) 

and an artificial output vector gsvd  with reduced dimension ng is introduced 

xVggSUg
T

1svdsvd11 ,      (13) 

The controller is designed for the output vector yCSCsvd  = [IPF Ip gsvd]
T
 instead of the original output vector yCSC  = [IPF Ip 

g]
T
. The simulation scheme in Fig. 12 is used.  

The matrix U1S1 can be used for computing estimates of g estimates from KF estimates of gsvd, which cannot be done in 

selection/averaging schemes. The reverse mapping, in place of Msel, is   

  gUUUSg TT

1

1

11

1

1svd

     (14) 

Fig. 18 displays surface plots of elements of the SVD approximation matrix Cg1 (left), and the difference (Cg - Cg1) 

(right) using ng = 6. It is evident that a rather rough approximation is obtained. A simulation of the scheme containing 

the KF only, without the CSC controller, shows considerable offsets in g estimates, as shown in Fig. 19. These offsets 

can be reduced only by using a considerably higher ng (25 or higher), as shown in Fig. 20, but in this case erratic 

performance of the KF was noticed at fast initial transients, and the desired degree of reduction is not achieved. This 

indicates that SVD cannot be applied for dimension reduction of the output vector when considering system dynamics. 

However, it may still be possible to use SVD to reduce the output dimension in a static manner, considering only the 

steady-state relation between IPF and g as in [11]. 

 

Fig. 18.  Surface plots of elements of Cg1(left), and the difference (Cg - Cg1) (right), using ng = 6 
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Fig. 19.  Minor disruption simulation with no CSC, KF only: Inboard gaps. Estimates are drawn with dotted lines 

on the lower graph only (displacement values). SVD-based output space reduction, ng = 6 

 

Fig. 20.  Minor disruption simulation with no CSC, KF only: Inboard gaps. Estimates are drawn with dotted lines 

on the lower graph only (displacement values). SVD-based output space reduction, ng = 25 
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Part II: MPC implementation using fast online optimization  

 

5 Fast online MPC methods 

5.1 MPC and QP 

Model Predictive Control (MPC) is a control methodology in which future control actions are determined by 

optimization of a performance criterion defined over a future horizon in which control signals are predicted using a 

dynamic process model. It is related to Linear Quadratic optimal control (LQ), in particular to Constrained LQ optimal 

control. It is able to handle constraints on process signals over a finite horizon. 

Consider a linear dynamic system 

,Cx=y,Bu+Ax=x kkkk+k 1
 (15) 

where 
kx is system state at time k , 

ku is input, and 
ky is output, and CB,A, are system dynamics matrices. By 

adding cost function 

  k|N+kxN

T

k|N+k

N

=j

k|j+ku

T

k|j+kk|j+kx

T

k|j+k xQx+uRu+xQx=J 
1

0

 (16) 

and constraints 

,yyy,xxx,uuu maxkminmaxkminmaxkmin   (17) 

the MPC problem is formed. Notice that the cost function J is not a convenient practical measure of good control 

performance, but rather a mathematically convenient simple norm.  

The problem that needs to be solved to obtain the control input value in each time-step of MPC is a quadratic 

programming (QP) problem in structure. The optimization variable z  may contain only elements of u ("condensed 

form"), or possibly also x and y ("structured form"). The MPC problem may be restated as a QP problem  

 zg+Hzzargmin=z TT  (18) 

subject to  

b=Az  (equality constraints that follow from dynamical system dynamics)  (19) 

maxmin zZzz   (inequality constraints that follow from dynamical system constraints)  (20) 

Without inequality constraints, the problem may be solved analytically via the least-squares method. Various solution 

methods thus mostly differ in the approach they take with respect to inequality constraints. 

5.2 Multiparametric or explicit method 

Fast online MPC can be carried out using a pre-calculated solution of the QP [15]. 

The vector b of the equality constraints equation depends linearly on the initial state x. The inequality constraints of the 

QP for which equality holds are called active. The set of active constraints depends on b. It is shown that for a given set 
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of inequality constraints to be active, x belongs to a polyhedral subset of the state space. Within such a polyhedron, one 

in effect only has equality constraints, which means the problem is easy to solve and the transformation from x to z
*
 is 

affine. 

In principle, one can build the list of all the polyhedra and corresponding affine transformations in advance. Online, one 

only has to find the polyhedron x is in, for instance using a binary search tree, and transform x into the exact solution z
*
 

using the corresponding affine transformation. 

The method is practically useful only for small problems because of the combinatorial explosion of the number of 

possible combinations of active constraints. For problems with the size of the one considered for plasma current and 

shape control, the memory required to store the solution and the time required to find the polyhedron x is in, make the 

method impractical [16, Ch. 12, 13, Preface]. Its use for CSC can thus be excluded. 

5.3 Fast online solvers 

Fast online MPC can also be performed using a fast QP solver. Traditionally, using general-purpose online QP solvers 

(for instance, CPLEX [31] or NAG [32]) for real-time MPC was considered feasible only for processes with slow 

dynamics, with sampling time in the order of minutes or hours.  

Recently, a number of solvers have been designed specifically for solving QP problems for MPC. They take into 

account that MPC requires repeated solutions of very similar QP problems of relatively small dimensions. Online 

computation time required can be shortened considerably by using separate offline pre-processing, optimized solver 

core, and code-generation approach, which may produce optimized solver core code for different MPC configurations 

and target platforms. They can utilize the fact that H, A, and Z are known in advance. Matrix products, decompositions, 

and/or algorithm weights are calculated offline; the code is optimized for calculating z
*
 as quickly as possible after x is 

known and b can be obtained.  

Fast online QP solvers for MPC have been developed based on all traditional types of QP solvers, as described below. 

5.3.1 Active set methods 

When the set of active inequality constraints for a given x is known, z
*
 is easy to calculate. To find the active set, 

efficient iterative methods that avoid checking all the possible combinations of active constraints exist. In each step, a 

constraint is either added to or removed from the working set. The number of iterations needed tends to be quite small 

in practice; however, no active set method is certified to reach the correct solution in polynomial time [16, part 4.3.3]. 

qpOASES is an open-source fast online active set solver written in C++ [22, 23, 24]. This solver was tested with the 

oscillating masses benchmark example [38]. 

5.3.2 Interior point methods 

Primal barrier methods convert the constrained optimization problem into an unconstrained problem (with respect to 

inequalities) by means of a barrier function [16, part 4.3.2]. The barrier function that is added to the cost function is 

infinite outside of the feasible set defined by inequality constraints, finite inside the feasible set, and twice continuously 

differentiable. For solving the problem obtained this way, an unconstrained minimization method is used. The barrier 

function is then iteratively decreased (multiplied by a factor smaller than 1) and the new problem is solved until the 

solution is close to the solution of the original problem. 
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The general idea of primal-dual interior point methods is to solve Karush-Kuhn-Tucker (KKT) conditions with a 

modified version of Newton’s method [16, part 4.3.2]. The complementary slackness condition is relaxed [17, part 11.7] 

and the relaxation parameter is lowered through successive iterations. 

In [25], a fast primal barrier method is introduced and applied to oscillating masses benchmark example, and in [26, 27], 

it is further developed into CVXGEN code generator. It has been tested with a pre-ordering and an energy storage 

example [39]. In [28], GPU is used for solving the problem. FORCES [29] is a primal-dual interior point solver, and 

HPMPC includes an interior point method implemented in C [30]. The last two solvers have been tested with the 

oscillating masses benchmark example. 

5.3.3 First order methods 

First order methods are iterative methods in which an iteration consists of a gradient step and projection to feasible 

domain [16, part 4.3.1]. First order methods are formally general QP solvers; however, the complexity of the projection 

operation depends a lot on the types of the constraints, and the convergence may be very slow in case of correlated 

optimization variables. Therefore, manual customization to specific QP problems is typically required for numerically 

efficient implementation. The methods being considered are optimized for MPC problems.   

With some types of constraints, for instance with simple upper and lower bounds on the actuator signal u, the projection 

is a simple min/max operation. On the other hand, the projection is difficult to carry out efficiently with output 

inequality constraints of MPC. This leads to projection onto a polyhedron, for which no simple algorithm exists. Such 

projection may in some cases be pre-computed parametrically [43], or it can even be evaluated with other QP solvers 

such as CPLEX [43] (where the focus of the study was on another part of the algorithm). More typically, a dual 

approach is adopted for state/output constraints. 

In particular, implementing soft constraints of MPC through the introduction of auxiliary slack variables is suboptimal 

because it leads to differently shaped constraint polyhedron and slower convergence [18, part 3.2.5]. Other means of 

taking soft constraints into account have thus been developed [16]. 

The convergence rate of first order methods is linear or sub-linear [18, part 2.1], which is slow compared to interior 

point methods. However, it has been shown that they can be efficient for obtaining approximations of relatively low 

accuracy, sufficient for control (considering the limited accuracy of the actuators and sensors). 

Their advantages are easy implementation due to short computer code, short iteration time, and the availability of 

meaningful complexity certificates [18, 19]. 

The basis for these methods is the classic gradient method [16, part 4.2.1] and its fast (accelerated) variant. For 

constrained optimization, it was extended into gradient projection method [16, part 4.2.1]. Gradient and gradient 

projection methods can be accelerated [16, part 4.2.1] in a similar fashion. 

As an example of a first order method, let us analyze the example of generalized fast dual gradient method as described 

in [20] with the iteration loop in Eqs. (47–50). It is designed to minimize a function of the form 

  Hyy=yf T

2

1
 (21) 

subject to constraints 
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.dvd

v=By

xb=Ay



 (22) 

We define  yh  to be the indicator function corresponding to equality constraints of the QP  
xbAy=

I=yh , where the 

value of the indicator function is 0 in the set defined by the constraints and   outside. Similarly, 

   .dyd;y=Y,I=yg n

Y    The original problem can thus be reformulated as  

     

.subject to

minimize

v=By

vg+yh+yf  (23) 

Dual variables are introduced only for the remaining constraints, and the problem is solved iteratively. In the line (47), 

KKT system is solved. In (48), generalized dual gradient and projection step is carried out using generalized proximity 

operator. In contrast with ordinary gradient and projection steps, a Lipschitz matrix is used in place of the scalar 

Lipschitz constant as a pre-conditioner to improve convergence. The lines (49-50) carry out acceleration. The equations 

are spelled out as 

  

 
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 (24) 

Another example is ADMM – Alternating Direction Method of Multipliers [17]. It consists of the iterations: 

 
 

 cBz+Axρ+y=y

yz,,xL=z

y,zx,L=x

1+k1+kk+k

k+k

ρz

+k

kk

ρx

+k

:

argmin:

argmin:

1

11

1

 (25) 

when solving the problem 

   

c=Bz+Ax

zg+xf

subject to

minimize  (26) 

and 

           .2/
2

2
cBz+Axρ+cBz+Axy+zg+xf=yz,x,L T

ρ    (27) 

where ρ is a positive parameter. 

5.4 Criteria for choosing the method 

The method to be used in FMPCFMPC must fulfil the following criteria: 

- The solution must be sufficiently accurate; 
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- The solution must be sufficiently fast; 

- The first two criteria must be met as reliably as possible using as simple hardware as possible. 

The prototype plasma current and shape controller, used for the evaluation of the QP solvers, uses sample time 100 ms 

[33]. Our goal is to achieve a much shorter peak calculation time, around 10 ms. With a general-purpose commercial 

solver CPLEX, the achieved computation times were 30 ms average, 50 ms maximum.  

5.5 Fast online MPC solvers 

The available open-source QP solvers are being carefully examined for the purpose of plasma magnetic control 

implementation. While QPgen [34, 20] has already been tested extensively and appended with some additionally 

required code, the work on FiOrdOs [36] and HPMPC [37] is still in progress. 

5.5.1 QPgen 

QPgen can generate C code for the alternating direction method of multipliers (ADMM), the fast dual proximal gradient 

method (FGMdual), and the fast primal proximal gradient method (FGMprimal) to solve the optimization problem 

instances [34]. It is supplied with AFTI-16 aircraft model case-study, a poorly-conditioned open-loop unstable system 

with 2 manipulated variables, 2 controlled variables, and 4 states. 

The generated C code for the aircraft MPC problem supplied with QPgen and “FGMdual” algorithm has been verified 

to be equal to the algorithm in the Eqs. (47-50) of [20], upgraded with reference tracking, restarting, and soft 

constraints. 

In the code, KKT system is solved using LDL
T
 decomposition with pivoting instead of solving the KKT system from 

line (47) directly, because the original matrix and the decomposition matrices are sparse so that this method requires 

fewer multiplications and is thus faster. Matrices are calculated in advance and hard-coded into the solver. In 8 lines of 

code, the right hand side vector is constructed, two triangular systems with permutation of the right hand side vector 

elements are solved, one multiplication of a vector with a diagonal matrix is carried out, and the primal solution is 

extracted. 

To perform a generalized proximity operation as required in the line (48), the only modification needed to the procedure 

for ordinary proximity operation is a change in the matrix B. It is multiplied with 2

1

μL , where 
μL is Lipschitz matrix. It 

results in differently scaled Lagrange multiplier but as the “new” B is also used in vector construction for KKT system, 

it cancels out. It is known that the sum of proximity operator of a conjugate to a function and proximity operator of the 

original function of the same argument equals the argument of the proximity functions:     x=x+x
gg *proxprox  

(Moreau decomposition, Rockafellar, 1970, Theorem 31.5, in [17]). This method is used in the code, as the proximity 

operation of the original indicator function of a box constraint is projection onto the box. Actually, soft clipping as in 

[18] is used instead if soft constraints are desired. In 5 lines of code, the argument of the proximity operator is 

calculated, the projection (or soft clipping) is done and the difference is returned. 
μL  and the “new” B are calculated 

offline and are included as a part of the code. 

The acceleration part (49–50) is trivial. 
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If the difference between the current accelerated dual variable and the previous one, and the difference between the 

current one and the previous non-accelerated one, have a positive scalar product, the algorithm is restarted with all the 

dual variables reset to the old accelerated one's value. Such restarting improves the convergence rate [16, part 4.2.1; 60]. 

5.5.2 FiOrdOs 

The FiOrdOs toolbox implements code generators for gradient method and fast gradient method [36]. For both methods, 

also a variant with adaptive step size is available. Primal, dual, and primal-dual approaches are available. We have 

implemented AFTI-16 aircraft model and analyzed its convergence. We followed both sizes of iteration steps and 

differences between the correct solution (given by quadprog function from the Matlab optimization Toolbox) and 

FiOrdOs solution at a given iteration. 

 

Fig. 21.  Convergence illustrated by log-scale norm of the difference between FiOrdOs and quadprog results as a 

function of the number of iterations. AFTI-16 aircraft model example case from QPgen is used. Every line 

represents one timestep of the simulation. 

5.5.3 HPMPC 

HPMPC is a C-code library aimed at providing routines for high-performance implementation of solvers for linear MPC 

and MHE [37]. It contains ADMM and an interior point method. Its time-critical routines are carefully optimized by 

hand for a number of architectures, including various low-power processors [40]. It contains a mass-spring-damper 

system example and was benchmarked using a mass-spring system with box constraints [41]. 
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6 Implementation of a prototype MPC controller for ITER plasma 

magnetic control using a QP solver based on the fast gradient 

method 

For the evaluation of fast online MPC solvers, an earlier version of the ITER plasma magnetic control scheme [33] is 

being used. Firstly, a detailed description of this scheme is given, then the achieved results are presented. 

6.1 Simulation setup 

The simulations and controller design methods are based on high-order local linear dynamical models of the tokamak 

plasma from CREATE-L or CREATE-NL [9, 10], at several different equilibrium points, defined by the nominal 

plasma current Ip, poloidal beta p, and internal inductance li, for the anticipated ITER plasma. The models are listed in 

Table 2.  

Table 2.  Local linear dynamic models. 

Model code Ip (MA) p  li  Number of states 

LM52 15.0 0.10 0.80 123 

LM53 15.0 0.10 1.00 123 

LM59 15.0 0.60 0.60 123 

LM60 15.0 0.60 0.80 123 

LMNE 15.0 0.10 1.21 120 

 

The Matlab/Simulink simulation scheme comprises:  

 the plasma/circuits linearized model, 

 a simplified model of plasma diagnostics for the plasma vertical velocity vp and position zp (a first-order 

dynamic lag filter with the time constant equal to 710
–3

 s is considered),  

 simplified models of the power supplies for the superconductive coils VS1 and for the in-vessel ohmic coils 

VS3 (a first-order dynamic lag with the time constant equal to 7.510
–3

 s; a delay equal 

 to 2.510
–3

 s; saturations ±6 kV and ±1.5 kV for VS1 and VS3, respectively),  

 simplified models of the main power supplies (saturations ±1.5 kV, except for VCS1 ±3 kV, and  first-order 

dynamic lag with the time constant equal to 0.015 s and a delay equal to 0.015 s), 

 the inner cascade control loop of the VS system, which aims at vertically stabilizing the plasma column, 

 the outer cascade control loop of the SC, which controls plasma current and shape, 

 blocks enabling the simulation of vertical displacement events (VDE), using a corresponding plasma model 

initial state, and H-L transitions, by injecting recorded profiles of  p and li  (BPLI) [11]  

The simulation solver ode23tb is used, with relative tolerance 10
–5

.   
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6.2 Vertical stabilization  

For vertical stabilization, a variant of continuous-time LQG controller which also controls plasma position zp (ctLQGz) 

[8] is used.   

The ctLQGz VS controller act on the control variables  uVS  = [uVS,1 uVS,2]
T
, where:   

 uVS,1 is the voltage applied to the IV coils VS3,   

 uVS,2 is the voltage applied to the SC circuit VS1,   

while it attempts to drive to zero the controlled inputs yVS  = [yVS,1 yVS,2 yVS,3]
T
, where    

 yVS,1 is the VS3 power supply current,   

 yVS,2 is the plasma vertical velocity vp,   

 yVS,3 is the plasma vertical position zp.   

It is built by firstly designing a basic ctLQG controller [12, 8] governing only [yVS,1 yVS,2 ]
T
, with a third-order model 

 0CBA ,,, rrr
 obtained from a nominal model with model reduction. The LQ controller is tuned by adjusting the 

diagonal elements of the cost matrices QC,y and RC,u, and the covariance matrices of the Kalman filter (KF) are tuned by 

using QK,y = BrBr
T
 and tuning the diagonal elements of RK,y [8]. Then, the additional control loop from zp is added by 

augmenting the nominal model with an integrator 





































1
,,

0
31

12

122,

13

0

0C
C

0

B
B

C

0A
A

r

a

r

a

r

r

a
     (28) 

where  T

r

T

r

T

r 2,1, CCC  .     

6.3 Plasma current and shape controller  

The CSC output is the vector of the 11 main power supply voltages VPF.  

The CSC inputs may include:  

 the vector of controlled gaps g, comprising four gaps and two strike-points,  

 the plasma current Ip,  

 the currents in the 11 superconductive coils IPF. 

 the plasma vertical position zp and the VS3 power supply current IVS3 may also be considered, although they 

are controlled by the VS.   

6.3.1 Model predictive control (MPC) 

The MPC CSC presented in this study is based on the nominal plasma model LM52 in the state-space form. The 

simplified models of the power supplies and sensors (diagnostics) are appended. Then, the ctLQGz VS feedback loop is 

added, and the subsystem from the process inputs uCSC  = VPF to the outputs yCSC  = [IPF IVS3 zp Ip g]
T
 is extracted. With 

a model reduction procedure, the order of the subsystem is reduced from 199 to 44. The base model for the MCP CSC 



35 

 

 0CBA ,,, CSCCSCCSC
 is finally obtained with model conversion to discrete time with the sampling time Ts = 0.1 s, 

assuming zero-order hold.  

For the purposes of this study, the CSC should facilitate offset-free control of Ip and g to zero with integral action, 

without set-point tracking. In our implementation, integral action is based on the disturbance estimation (DE) concept 

[13], and the velocity form (without tracking) is used to prevent offset due to the control cost when the control signal is 

non-zero at the steady-state.  

For the estimation of asymptotically non-zero disturbances, the base model is augmented with DE integrators at the 

outputs which require offset-free control. Consider the discrete-time state-space model  
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 where w and v are white noise signals to the state and output, respectively. DE integrator states d with the associated 

white-noise signal wd are appended to the state x, so that the augmented state is xa = [x
T
 d

T
]

T
, and wa = [w

T
 wd

T
]

T
. The 

augmented system is  
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and is rewritten as 
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The steady-state Kalman filter (KF) 
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is used state estimation with the disturbance-augmented model, where MK is computed via the steady-state solution of 

the Riccati equation from the covariance matrices QK = E{wawa
T
} and RK = E{vv

T
}. The KF is used in the sense of an 

observer, where the diagonal elements of QK and RK are used as tuning parameters to achieve desired dynamics.  

For the velocity form, the disturbance-augmented system  0CBA ,,, aaa
 is augmented again. In the velocity-

augmentation, the change of the input signal u becomes the new input; the state expands to xav = [xa
T
 u(k–1)

T
]

T
; the 

new output is yav = [ya
T
 u(k–1)

T
]

T
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with Da = 0 rewritten as 

)()(

 )()()1(

kk

kkk

avavav

avavavav

xCy

uBxAx



      (34) 



36 

 

Then, the MPC controller is built using the Multi-Parametric Toobox (MPT) [4] in the output-cost formulation, with the 

cost function  
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where the diagonal elements of the cost matrices for the outputs QC,y and the control moves RC,u are used as tuning 

parameters, where N = 30 is the prediction horizon length. The control law is obtained by minimising J with respect to 

the vector of the future control moves u~  subject to constraints (currently, only control amplitude constraints umin ≤ u ≤ 

umax are used). To reduce the computational demand, the number of free control moves is reduced from 30 to 3 using 

move blocking to intervals [2 2 26].  Due to the finite horizon length, the control law is computed as a least-squares 

problem in the unconstrained case, or as a quadratic programming problem in the constrained case [13].  

6.3.2 Singular perturbation decomposition (SPD) 

For comparison, the plasma current and shape control algorithm based on SPD of Ariola and Pironti [7] is used. The 

SPD CSC implements a multivariable proportional-integral control law from g and Ip, with an additional proportional 

contribution from IPF. It also includes windup protection in case of actuator saturation.   

6.4 MPC controller model adaptation for use with fast online MPC/QP solver 

6.4.1 Problem background 

The reference controller model has been built using the MPT Toolbox [4] and general-purpose QP solvers (Matlab 

quadprog, IBM ILOG Cplex).  

To investigate the potential computation performance the using a fast first-order QP solver, the QPgen code generation 

library has been selected. In following, the required MPC problem formulation for use with a fast QP solver and some 

required modifications to QPgen are described.  

In the original implementation, the MPC problem setup was made using the MPT_yalmipCFTOC function of the MPT 

Toolbox and internally parsed using YALMIP. For use with QPgen it was found more appropriate to carry out the MPC 

problem setup manually, because grouping of different constraint types is required, and because the implementation of 

soft constraints is different. The QP problem formulation requires the system to be first augmented by integrators for 

disturbance estimation (30) and second to the velocity form (33). Further, the process the output cost matrix Qy is 

provided but the output cost formulation (35) is not supported within QPgen, which requires the following state and 

input cost matrices to achieve same effect: 
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where 
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The augmented state and input constraints are then defined by 
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where UB and LB stands for upper and lower state/input bound, respectively. Additionally, soft output constraints are 

set. 

For enabling the full-featured implementation of the MPC problems using QPgen solver, allowing MPC and QP 

optimization, some modifications of the QPgen algorithm were required: 

 Move blocking – stacking of control signal along the prediction horizon in same-valued blocks (in this case, 3 

blocks with lengths [1 2 27]) 

 Sparse output constraints – partial elimination of output constraints along the prediction horizon (constraints 

applied to each 3
rd

 sample in this case) 

 Elimination of redundant constraints equations where the variables are unbounded. 

 Parallelization – fully exploitable in bare C without Matlab interface - using Intel compiler, as the originally 

coded parallelization procedure is ineffective with the plasma control problem 

 Quadratic cost on soft output constraints – only linear cost is implemented in the original QPgen solver. 

6.4.2 MPC problem simplification 

The main MPC parameters affecting the QP size and complexity are the process states x, inputs u, constraints on them 

and the horizon length N. These are affecting the size of the QP optimization vector z, Hessian matrix H and inequality 

constraint matrices Aineq, Bineq. 

  Nsizesizesizesize  )()()()( suxz     (39) 

  Nsizesizesizesize ineq  )()()()( suyA     (40) 

6.4.2.1 Efficient handling of soft constraints 

For handling soft constraints in MPC, slack variables added to constrained process variables are typically introduced. 

When the value of the process variable does not violate the constraint values, the slack variable is zero; when the 

process variable exceeds the constraint, the value of the slack variable is equal to the amount of constraint violation. 

Thus softened constraints allow constraint violations, but with a high penalty on the violation in the cost function. The 

introduced slack variables significantly expand the optimization problem (1 or 2 slacks and 2 or 4 additional constraint 

inequalities for each sample of the prediction) and its computational cost. On the other hand, the QPgen approach to 

soft constraints handling [18], without the need for additional slack variables maintains the QP size of the original hard-

constraint optimization problem, as well as the solver computational demand. 

6.4.2.2 Move blocking 

It is well known that by considering constant disturbance and reference signals along the horizon, the major part of the 

resulting controller action is performed in the early part of the horizon. The move blocking technique [3] exploits this 

fact and is used to significantly reduce the number of active inputs along the control horizon. It is achieved by stacking 

consecutive inputs in blocks with the same control value and by this effectively reducing the size of the optimization 

vector (and size of the resulting QP). 
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6.4.2.3 Sparse placement of output constraints 

To further reduce the optimization problem size, an efficient approach [12] is to reduce the number of output constraints 

placed along the prediction horizon, by enforcing constraints every k-th sample only (e.g. every 2
nd

 or every 3
rd

 etc.). 

Effectively this means reduction of the number of constraint equations (represented by Aineq matrix) by factor of k. This 

results in less strict enforcement of constraints, however constraints enforcement remains reasonable when the sampling 

time is relatively short. Notice that relatively short sampling time, considering the process dynamics, is used in order to 

maintain fast response to disturbances.  

6.4.2.4 Elimination of redundant constraints 

By removing the equations for the unbounded variables (states, inputs, outputs), the constraints number (represented by 

Aineq matrix) can be decreased without any influence on MPC control. 

6.4.2.5 Plasma MPC problem simplification 

To present the achieved QP problem reduction via the above-mentioned MPC simplifications, the plasma-controller 

parameters are given in the Table 3. The original problem considers a system with 62 states, 11 inputs and 20 outputs, 

(of which 11 are bounded), free control moves allowed at each sample along the horizon (i.e. 30), and with all horizon 

samples subject to constraints. The resulting simplified MPC structure maintains the 11 inputs and 62 states, but 

reduces affected outputs to 11, the free control moves to 3, and with output constraints placed on every third sample. 

Table 3.  MPC problem simplification influence to QP complexity 

Parameter size u x y s Nz
2
 Ncstr

3
 Aineq 

(y+u+s)*N 

z 

(x+u+s)*N 

H memory 

Original
4
 

11 62 20 20 30 30 15302790 2790 27902790 
 

Soft constraints 

without slacks 
11 62 20 0 30 30 9302190 2190 21902190 9.7 MB 

Redundant 

constraints rem. 
11 62 11 0 30 30 6602190 2190 21902190 7.7MB 

Move blocking 
11 62 11 0 3 30 660219 219 219219 2.3MB 

Constr. sample 

reduction 
11 62 11 0 3 10 220219 219 219219 1.6MB 

 

6.4.3 Implementation of quadratic cost on for soft constraints  

The implementation of quadratic cost on soft constraints into QPgen toolbox has been made based on [18], section 

3.2.5. Therefore quadratic cost on slacks can be added without expanding the optimization variable. Firstly we solve the 

problem without constraints and then apply the Karush-Kuhn-Tucker conditions to the unconstrained solution with 

quadratic cost on the soft constraints variable. 

                                                           

2
 Nz – optimization-vector size affecting horizon length 

3
 Ncstr – constraint equation number affecting horizon length 

4
 For information only, not feasible for use due to slow convergence 



39 

 

Option MPC.W.soft was added to the library as a constant value for the implementation of the quadratic cost on soft 

constraints. The value is later on multiplied by an identity matrix. The size of the matrix is equal to the number of the 

constraints, therefore is transformed via  

WCCW
T

s   (41) 

The implementation requires cost on states and inputs in the CSC MPC cost function, for which the Q state cost matrix 

is introduced into the MPC problem formulation, only for the quadratic cost on soft constraints. All related 

modifications are documented in a separate file “QPgen_IJS_changelog.pdf”. 

6.5 Simulation results 

6.5.1 Validation of fast QP solver 

Table 4 lists RISE values (root integral squared error, from the corresponding equilibrium point) of the main process 

signals in 25 s simulations using the same ctLQGz VS controller,  

 with either the MPC or the SPD CSC,  

 for VDE events with the initial amplitude –0.1 m and for BPLI disturbances,  

 with the five local models, to roughly assess the sensitivity to the varying operating conditions. 

Figs. 22-23 show the main process signals in VDE events, and Figs. 24-27 with BPLI disturbances, respectively, 

simulated in the same time interval; only the simulations with the models LM53 and LM52 are included; the 

performance with MPC is compared with SPD. "Delta" signal values (the deviations from the equilibrium point of the 

linear model) are displayed.  

The results of the MPC and the SPD scheme are difficult to compare because both methods involve a large number of 

degrees of freedom in tuning that allow various trade-offs, and the presented simulation results only show the 

performance with particular sets of tuning parameters. With MPC we have achieved a generally faster suppression of 

disturbances at Ip and better at g. The zp response is mostly improved in BPLI simulations but is slower in VDE 

simulations. The improved tracking performance comes at the price of a slight increase of the voltages VPF and currents 

IPF, but there are no rapid reactions indicating over-sensitivity.  

Fig. 28 shows a simulation similar to the one in Fig. 26, where, in addition to u constraints, soft constraints max(IPF)  4 

kA were set in the MPC controller. It is not feasible to fully adhere to this limit, yet the controller manages to reduce the 

current peaks visibly. 
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Fig. 22.  VDE simulation: ctLQGz-MPC, model LM53. 
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Fig. 23.  VDE simulation: ctLQGz-SPD, model LM53. 
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Fig. 24. BPLI simulation: ctLQGz-MPC, model LM53. 
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Fig. 25.  BPLI simulation: ctLQGz-SPD, model LM53. 
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Fig. 26.  BPLI simulation: ctLQGz-MPC, model LM52. 
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Fig. 27.  BPLI simulation: ctLQGz-SPD, model LM52. 
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Fig. 28.  BPLI simulation: ctLQGz-MPC, model LM52, with soft constraints max(IPF)  4 kA. 
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Table 4.  RISE values (from the corresponding equilibrium). 

LMNE   VDE-ctLQGz-MPC   VDE-ctLQGz-SPD   BPLI-ctLQGz-MPC   BPLI-ctLQGz-SPD 

max(CtrlGaps)      0.067183 0.07322       0.24188        0.6735 

avg(CtrlGaps)      0.019551  0.02092       0.16442         0.447 

max(AllGaps)      0.088145  0.09702       0.48326        1.0339 

avg(AllGaps)      0.017834  0.01875       0.20083       0.48994 

IVS3         36320   36357        7358.9        8557.4 

IVS1          1262  1344.2        4731.5        7366.8 

VS3        97.011  97.126        17.127         65.23 

VS1        3264.5   3283.2        1420.5        2411.2 

vp        0.6012  0.60184       0.11636      0.087254 

zp      0.025029  0.02783      0.087254       0.25402 

Ip         25926   31177   442220   575550 

LM52   VDE-ctLQGz-MPC   VDE-ctLQGz-SPD   BPLI-ctLQGz-MPC   BPLI-ctLQGz-SPD 

max(CtrlGaps)       0.11312 0.13224       0.28927       0.45392 

avg(CtrlGaps)       0.03931  0.04727       0.19914       0.32625 

max(AllGaps)       0.21748  0.24904        0.6673        1.2303 

avg(AllGaps)      0.052378  0.06047        0.2547       0.42863 

IVS3         10014   9840.8        6860.6        8539.7 

IVS1          3861  4097.4         22622        8149.3 

VS3        158.11  156.92        63.439        69.548 

VS1        2484.3  2435.7        1825.7        2412.4 

vp       0.13284 0.13179      0.075632      0.086616 

zp      0.082884 0.09539       0.14286       0.26018 

Ip         79948 134900     275000    431300 

LM53   VDE-ctLQGz-MPC   VDE-ctLQGz-SPD   BPLI-ctLQGz-MPC   BPLI-ctLQGz-SPD 

max(CtrlGaps)       0.10138 0.11235       0.27591       0.46948 

avg(CtrlGaps)      0.037829  0.04289       0.18146       0.30869 

max(AllGaps)       0.25307  0.28416       0.56506        0.8483 

avg(AllGaps)      0.055365 0.06094        0.2296       0.36091 

IVS3         11949   11860        5730.9        6909.6 

IVS1        4075.3  4311.1         12920          5927 

VS3        192.85  192.27        54.533        56.088 

VS1        2615.1  2586.5        1548.7        1897.1 

vp       0.16552  0.16504      0.062971      0.073573 

zp      0.078885  0.08749       0.12626       0.17578 

Ip         68748 122600   265130   380330 

LM59   VDE-ctLQGz-MPC   VDE-ctLQGz-SPD   BPLI-ctLQGz-MPC   BPLI-ctLQGz-SPD 

max(CtrlGaps)       0.12084 0.16562     0.30581       0.54037 

avg(CtrlGaps)      0.048016 0.05993       0.25257       0.29891 

max(AllGaps)       0.20879  0.28263        1.2666        2.3938 

avg(AllGaps)      0.059293 0.07147       0.41902       0.58263 

IVS3        9016.3  8624.3        8502.6         10344 

IVS1        3401.4  3459         55016        7778.7 

VS3        134.88  132.64        86.887        94.695 

VS1        2623.4  2533.1        2282.3        3016.1 

vp       0.10447  0.10228      0.091223       0.10034 

zp      0.091871 0.11635       0.15196       0.35798 

Ip   128420  192320   291360    378100 

LM60   VDE-ctLQGz-MPC   VDE-ctLQGz-SPD   BPLI-ctLQGz-MPC   BPLI-ctLQGz-SPD 

max(CtrlGaps)       0.14021 0.17821       0.36421        0.6735 

avg(CtrlGaps)      0.049426  0.06082       0.23439         0.447 

max(AllGaps)       0.25214 0.29641       0.68351        1.0339 

avg(AllGaps)      0.062564 0.07296       0.28841       0.48994 

IVS3        8424.5  7989.6        6378.5        8557.4 

IVS1        3923.5  4168.2         19028        7366.8 

VS3        119.07  116.17        55.333         65.23 

VS1        2356.3   2248.4        1691.6        2411.2 

vp       0.10323  0.10036      0.071016      0.087254 

zp      0.085086  0.10566       0.13991       0.25402 

Ip         79535  120170   308480   575550 
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6.5.2 MPC problem computational efficiency 

To investigate the possible improvements of the computational efficiency, the following tasks were  

 to compare the generic CPLEX solver performance with original and simplified MPC problem,  

 to repeat the experiment using the developed QPgen based fast MPC setups,  

 to verify the control quality.  

Figures 29 and 30 presents the plasma control time plot comparison using the generic CPLEX solver of original and 

simplified MPC problem, respectively. Figures 31 and 32, respectively, give the iteration count and computation time at 

each simulation sample.   
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Fig. 29.  BPLI simulation: ctLQGz-MPC, model LM52, using original model and CPLEX solver. 
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Fig. 30.  BPLI simulation: ctLQGz-MPC, model LM52, using simplified model and CPLEX solver. 
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Fig. 31.  No. of iterations and computation time: ctLQGz-MPC, model LM52, using original model and CPLEX 

solver. 

 

Fig. 32.  No. of iterations and computation time: ctLQGz-MPC, model LM52, using simplified model and 

CPLEX solver. 
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 In Table 5, the results of all the performed experiments with the original and simplified model, using CPLEX and 

QPgen are listed.  For each experiment, the average number solver iterations and the computation time per time sample 

are given. The simulations have been performed using a laptop computer with a 2.4 GHz Inter Core2Duo processor, 

with 8 GB RAM, using a single core. 

In the simplified problem, complexity-reduction techniques of move blocking [1 2 27] and sparse output constraints 

(with constraints remaining at each third sample). In both original and simplified problems, linear cost on soft 

constraints is used. The impact of numerical precision on the computational performance was also investigated with 

QPgen, by testing two values of tolerance in the plasma-control specific relevant range, 10
-3

 and 10
-4

.  

Further internal adjustments available within QPgen were tested: 

 two available algorithms, ADMM and FGMdual  

 QP size reduction using null-space: the SVD derived null-space obtained via Matlab function null, and the 

dynamical-system based null-space derived by 
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The QPgen solver performance is displayed in Figs. 33-34, and summarized in Tables 3 and 5. From the results the 

following can be observed: 

 For the original MPC problem, the ADMM and FGM dual methods provide similar results, with slightly better 

computational efficiency of FGM when handling constraints.  

 Using dynamical-system derived null-space matrix (42) improves computation stability and efficiency to a 

degree. Since the iteration number per sample is very similar, one can deduct that the computation efficiency 

per single iteration benefits from such null-space matrix. 

 The simplification of the MPC problem via techniques described in chapter 6.4.2 significantly affects the 

solver performance, and reduces the computation time 20-times (Fig. 31), while maintaining close to original 

control quality (Fig. 29)  

 For the simplified MPC problem, the FGM dual algorithm yields notably (cca 2 times) faster convergence. 

Additional solver acceleration (1,4x) can be gained by using the SVD-derived null space.  
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Table 5. Plasma MPC control QPgen solver performance summary, single-core implementation 

Parameter \ solver Original problem  Simplified problem 

 

to
le

ra
n

ce
 avg  iter. per 

solution 

avg time per 

solution [ms] 

avg  iter. per 

solution 

avg  time per 

solution [ms] 

CPLEX 

10
-3

 

2000 1332 326 48.7  

QPgen, ADMM, SVD null-space  108 171 177  8.7  

QPgen ADMM, DS null-space 110 100 1000 30.4  

QPgen, FGM dual, SVD null-space  113 160 80  5.9  

QPgen FGM dual, DS null-space 113 100 200 10.1  

QPgen FGM dual, DS null-space  

10
-4

 

/ / 385 13.1  

QPgen FGM dual, SVD null-space / / 286  9.7  

 

 

Fig. 33. QPgen solver execution time and number of iterations based on original MPC problem 
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Fig. 34. QPgen solver execution time and number of iterations based on simplified MPC problem 

6.5.3 Parallelization 

Further acceleration was expected by employing a parallel implementation of the algorithms on a multi-core processor. 

QPgen includes support for parallel execution, but it was not functional and efficient for our example originally, so 

certain modifications were required. The Intel C++ compiler is used with parallel flag enabled to parallelize simple 

loops in code. It has the ability to analyze the dataflow in loops to determine which loops can be safely and efficiently 

executed in parallel, which has proven to be very efficient [42].  

As the full performance advantage gained by parallelization cannot be achieved using Matlab (MEX) interface to the 

function, the parallelization performance study has been performed on off-line data. The generated code is compiled 

using the Intel C++ compiler to a standalone application and run separately. The results are presented in Figures 35-38 

and summarized in the Table 6, where the average number of iterations and the minimum and peak execution times are 

listed. In this case computations have been performed using Intel Core i5, 2.7GHz processor, with 8 GB ram, by using a 

single core or all four cores. Because of spikes due to the operating system and other running programs in time 

measurements, multiple measurements are plotted, and such spikes are removed from the data reported in the table.  
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Fig. 35. QPgen solver executions time and number of iterations, off-line model-generated data based on original 

MPC problem, single thread  

 

Fig. 36. QPgen solver executions time and number of iterations, off-line model-generated data based on 

simplified MPC problem, single thread  
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Fig. 37. QPgen solver executions time and number of iterations, run on off-line model-generated data based on 

original MPC problem, single thread  
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Fig. 38. QPgen solver executions time and number of iterations, off-line model-generated data based on 

simplified MPC problem, four threads  
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Table 6: Plasma MPC control QPgen solver performance summary, parallel implementation 

Parameter \ solver Original problem Simplified problem 

 

to
le

ra
n

ce
 

avg itererations 

per solution 

avg / peak time per 

solution 

avg iterations per 

solution 

avg / peak time per 

solution 

Single-core 

10-3 

123.3 127.6  /  426.96 130.6 11.94 / 31.61 

Intel-compiler parallelization / / 130.6   1.94 /   8.47 

Single-core 

10-4 

/ / 154.1 14.40 / 49.51 

Intel-compiler parallelization / / 154.1  2.29 / 10.47 
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7 Conclusions 

In this report we describe the results of the first year of the three-year project FMPCFMPC. The report has two parts 

which roughly correspond to two parallel but interconnected work-packages, WP1: Plasma current and shape (CSC) 

control for ITER, and WP3: Fast online Quadratic Programming.  

In Part I we expand the preliminary steps of MPC CSC with actual MPC controller design. Compared to a previous 

MPC CSC prototype, we have added set-point tracking and the ability to control more gaps, comparable to the "extreme 

shape controller" (XCS) of CREATE.  

In Part II we present a survey of fast online QP methods, with emphasis on first-order methods. A case study is 

presented where a previous prototype version of MPC CSC for ITER is implemented. The dimensions of the system (11 

manipulated variables, 6 controlled variables, 60 states, soft output constraints) are much larger that the dimensions of 

benchmark systems found in the available literature. The implementation is based on QPgen, an open-source solver 

comprising first-order methods FGM and ADMM. With complexity reduction techniques and certain modifications of 

QPgen we were able to achieve peak sample computation times in the order of 10 ms, which is a five-fold speed-up 

compared to the state-of-the-art commercial solver CPLEX, and is considered sufficiently fast for actual controller 

implementation.   
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