

# **Comparison of H-mode Plasmas in JET-ILW and JET-C with** and without Nitrogen Seeding

A E Jarvinen<sup>1</sup>, C Giroud<sup>2</sup>, M Groth<sup>1</sup>, P Belo<sup>3</sup>, S Brezinsek<sup>4</sup>, M Beurskens<sup>2</sup>, G Corrigan<sup>2</sup>, S Devaux<sup>5</sup>, P Drewelow<sup>5</sup>, D Harting<sup>2</sup>, A Huber<sup>4</sup>, S Jachmich<sup>7</sup>, K Lawson<sup>2</sup>, M Lehnen<sup>4</sup>, B Lipschultz<sup>8</sup>, G Maddison<sup>2</sup>, C Maggi<sup>6</sup>, C Marchetto<sup>9</sup>, S Marsen<sup>5</sup>, G F Matthews<sup>2</sup>, A G Meigs<sup>2</sup>, D Moulton<sup>1</sup>, B Sieglin<sup>6</sup>, M F Stamp<sup>2</sup>, S Wiesen<sup>2</sup> and JET Contributors<sup>\*</sup>

JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK

<sup>1</sup>Aalto University, Association Tekes, FI-00076 AALTO, Espoo, Finland. <sup>2</sup>Culham Centre for Fusion Energy, Association CCFE, Abingon, UK <sup>3</sup>Institute of Plasmas and Nuclear Fusion, Association IST, Lisbon, Portugal <sup>4</sup>Forschungszentrum Jülich, Institute für Energie- und Klimaforschung Plasmaphysik, 52425 Jülich, Germany

\* See the Appendix of F. Romanelli et al., Proc. 25th IAEA FEC, St. Petersburg 2014

<sup>5</sup>Max-Planck Institute for Plasma Physics, Greifswald, Germany <sup>6</sup>Max-Planck Institute for Plasma Physics, Garching, Germany <sup>7</sup>Association "Belgium State", Lab. for Plasma Physics, Brussels, Belgium <sup>8</sup>University of York, YO10 5DD York, UK <sup>9</sup>Association ENEA IFP-CNR, Milan, Italy

# **EDGE2D-EIRENE** simulations of highly shaped, H-mode plasmas in JET with the full carbon and the ITER-like wall

- JET was converted from an all carbon (C) device (**JET-C**) to the ITER-like wall (**JET-ILW**) [1]
  - C radiation and fuel retention reduced by 90% [2, 3]
  - ✓ Confinement reduced by 30 % in 1 highly shaped H-modes  $\rightarrow$  largely recovered with N<sub>2</sub>-injection [4]
- JET-C → JET-ILW reduced SOL radiation:
  - C is a strong divertor radiator
  - $\checkmark$  SOL radiation recovered with N<sub>2</sub>
- JET-C  $\rightarrow$  JET-ILW expected to  $_{-2}$ increase the atomic vs. molecular fraction in the recycling fluxes:
  - ✓ More fast deuterium reflections from W than from C



# 40% reduction in the SOL radiation with the change from JET-C to JET-ILW

- The simulations indicate a 40% reduction in the SOL radiated power in unseeded conditions, similar to experiments
  - $\checkmark$  Total edge radiation underestimated by a factor of 2, similar to L-mode studies [7]
  - Deuterium radiation remains the same within 10 – 15%



- Predicted LFS divertor power deposition increased by 25 – 50%
- **Detachment threshold in density** increased by 15%.

# **Detachment assisted by nitrogen injection at P<sub>rad</sub><sup>div</sup>/P<sub>SOL</sub>** ~ <sup>1</sup>/<sub>2</sub> in both JET-C and JET-ILW

- This study: EDGE2D-EIRENE investigations of N<sub>2</sub> seeded Hmode plasmas in JET-ILW and JET-C  $I_p = 2.5$  MA and at  $B_T = 2.7T$ with  $P_{in} = 16 \text{ MW} [4, 6]$

## Lower D<sub>2</sub>-fraction in recycling ions in JET-ILW predicted to increase target loads by 20% relative to JET-C

- EDGE2D-EIRENE simulations without (any) impurities conducted to investigate the impact of the wall recycling properties on the SOL conditions
  - $\checkmark$  Difficult to investigate experimentally, due to simultaneous change of the SOL radiation characteristics
- **1.20** 50% lower  $D_2$ -fraction in the divertor recycling fluxes for JET-ILW than JET-C.
- **2.5 10% lower D<sub>0</sub> flux** crossing the  $\sum_{1.5}^{2}$ separatrix for JET-ILW than for JET-C.
- **3.** Deuterium radiation remains the same within 5 – 10%.



- A factor of 5 reduction in the LFS power deposition + LFS detachment in JET-ILW and JET-C, when  $P_{rad}^{div}/P_{SOL} \sim 10 \rightarrow 50\%$ .
  - Lower intrinsic radiation in JET-ILW, compensated by stronger N radiation  $\rightarrow$ detachment at similar total radiation
- 0.4 Detachment → 0.35 0.3 0.25 ັ<sup>当 0.15</sup> JET-ILW **JET-C** LFS, DIV <sup>5</sup> **DOD**<sub>LFS, integral</sub>

PLFS, div 2 2.5 3 3.5 4 4.5 5

n<sub>e, sep, LFS-mp</sub> [1e19 m<sup>-3</sup>]

<sup>6</sup> P<sub>rad, tot</sub> JET-C

Experiment

- D<sub>0</sub> flux fuelling pedestal is predicted to increases with divertor radiation
  - $\checkmark$  Divertor plasma cooling  $\rightarrow$  reduced opacity to recycling neutrals
  - $\checkmark$  Pedestal n<sub>e</sub> increase observed with N<sub>2</sub>injection in JET-ILW in high recycling [4].
  - ✓ In JET-C and in JET-ILW close to detachment, reduction of pedestal density with  $N_2$ -injection is observed [4]. This is presumably related to transport and pedestal stability changes not included in the model.

# Conclusions





- 4. Low field side (LFS) heat deposition increased by 10 – 20%, due to lower molecular heat dissipation.
- **5. LFS** peak electron temperature increased by up to 50%
- 6. Detachment threshold in density increased by 10%.
- Acknowledgements

expressed herein do not necessarily reflect those of the [4] C Giroud, et al., Nucl. Fusion 53 (2013) 113025. European Commission.

#### References

This work was supported by EURATOM and carried out [1] G F Matthews, et al., Phys. Scr. T145 (2011) 014001. within the framework of the European Fusion [2] S Brezinsek, et al., Jour. Nucl. Mater. 438 (2013) S303 - S308. Development Agreement. The views and opinions [3] S Brezinsek, et al.. Nucl. Fusion 53 (2013) 093023. [5] G Maddison, et al. 40<sup>th</sup> EPS conference, Helsinki, (2013). [6] G Maddison, et al., Nucl. Fusion 54 (2014) 073016. [7] M. Groth, et al., Nucl. Fusion 53 (2013) 093016.

- LFS detachment assisted by nitrogen occurs in both JET-C and JET-ILW when about 1/2 of the P<sub>SOL</sub> is radiated in the divertor
- **D**<sub>0</sub> influx crossing separatrix is predicted to increase with divertor radiation  $\rightarrow$  increase of pedestal density observed experimentally in JET-ILW in high-recycling conditions with  $N_2$
- A factor of ~2 reduction in the **intrinsic SOL radiation** with the change from JET-C to JET-ILW  $\rightarrow$  up to 50% increase in the LFS divertor power
- Stronger D<sub>2</sub>-fraction in divertor recycling can reduce the LFS power in JET-C by 10 – 20% relative to JET-ILW



**Aalto University School of Science**