

Update on EDGE2D-EIRENE simulations for the ER pedestal project – 2nd Oct 2015

Presented by A. E. Järvinen

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Parameter scans with EDGE2D-EIRENE conducted

- Base: Base case boundary conditions & transport coefficients from [1].
- What is being done: linear parameter variations (sensitivity studies) were conducted
- ✓ Last time (June 2015)
 - $n_{e,sep}/n_{e,ped}$ -ratio and $T_{e,sep}$
- ✓ This talk (Oct 2015)
 - Impurity profiles (radial + poloidal)

June 2015: EDGE2D-EIRENE predicts typically n_{e'sep}/n_{e,ped} about 0.4 – 0.6

	n _{e,sep} /n _{e,ped}	T _{e,sep} (eV)
Basecase (horizontal LFS target)	0.4 – 0.5	77 – 87
N ₂ -seeding	0.35 - 0.45	80 – 100
Vertical LFS target	0.5 – 0.6	95 – 100
50% increase P _{SOL}	0.45 – 0.6	85 – 100
D _{perp,SOL+ETB} x5	0.4 - 0.45	70 – 80
X _{perp,SOL+ETB} x0.5	0.4 – 0.5	90 – 100

The questions raised by S. Saarelma (June 2015) – EDGE2D-EIRENE modeling

- How sensitive are the <u>predicted impurity density</u> profiles and Z_{eff} to the
 - 1. Assumed pedestal diffusivity?
 - 2. N₂-injection rate?
- 2. What kind of **poloidal asymmetries** are predicted for the **impurity and electron density profiles**
 - ✓ What are the physics mechanisms affecting the poloidal asymmetries?

Part I 🕥

How sensitive are the predicted impurity density profiles to the assumed pedestal diffusivity?

- Multiply the D_{perp} in SOL and ETB by a factor of 5:
- Predicted Z_{eff}, and n_{impurity} profiles at the LFS midplane (for a single N-radiation level)
 - Strong impact on ETB gradients outside separatrix + absolute n_{IMP} at the pedestal

Predicted LFS mid-plane profiles show...

- Increase of SOL n_{IMP} and Z_{EFF} values. Reduction of the same parameters inside the separatrix
- Expected result when increasing the diffusive transport across the separatrix and SOL

Aaro Järvinen | The name of the meeting should appear here | The date of meeting should appear here | Page 6

How do the predicted impurity density and Z_{eff} profiles vary with N₂-injection rate?

- Monotonic increase of pedestal $Z_{\rm EFF}$ and $n_{\rm IMP}$ inside the separatrix with seeding rate in HTVT
- Roll-over of Z_{EFF} and n_{IMP} inside the separatrix with seeding rate in HT3R following detachment

Monotonic increase in pedestal Z_{eff} predicted in HTVT. Roll over with seeding in HT3R.

 Also for the absolute nitrogen density, EDGE2D-EIRENE predicts monotonically increasing densities in HTVT and a roll-over of nitrogen density inside the separatrix with detachment in HT3R. The physics reasons for the roll-over are not obvious at the time of completing this report. Could, presumably, be related to increase in the background ion out-flux effectively, 'flushing' nitrogen out.

What kind of poloidal asymmetries are predicted for the impurity and electron density profiles

What are the physics mechanisms affecting the poloidal asymmetries?

- 1. Peaking of Z_{EFF} and n_{IMP} above the mid-plane
 - ✓ Peak n_{IMP} up to a factor of 4 higher than minimum n_{IMP} along LCFS
 - ✓ Ionization driven poloidal $n_e/T_e/T_i$ asymmetries ⇒ accumulation of impurities away from the active X-point (towards higher temperatures)
- **2. Asymmetries vanish with reducing minor r:** poloidally flat n_e, Z_{eff} profile beyond pedestal

Along the LCFS, Z_{eff} is predicted to peak in the region above and around LFS mid-plane

- n_e predicted to peak close to X-point Proximity of the divertor neutral source
- Pressure conserved ⇒ Temperature gradient along LCFS ⇒ Ion temperature gradient force pushes impurities towards mid-plane and above
- Low flow velocities (M < 0.1) inside the separatrix ⇒ low frictional drag on the impurity ions ⇒accumulation of impurities at around mid-plane and above

Strong poloidal asymmetries are only present close to the LCFS, where the 2-D neutral ionization distribution drives n_e/T_e/T_i asymmetries leading to temperature gradient forces and impurity accumulation around the upper half of the poloidal cross section.

 How sensitive are the <u>predicted impurity density</u> <u>profiles</u> and Z_{eff} to the

ETB profiles relax with increasing ETB diffusivity (as expected) \Rightarrow impact on predicted n_{IMP} at pedestal

Increase of pedestal Z_{EFF} with increasing N_2 injection \Rightarrow Roll-over of pedestal Z_{EFF} with detachment in HT3R (physics reasons not clear yet)

2. What kind of **poloidal asymmetries** are predicted for the **impurity and electron density profiles**

Accumulation of impurities above mid-plane. Ionization driven $n_e/T_e/T_i$ asymmetries + temperature gradient forces.

Pedestal and SOL D_{perp} up by x5 \Rightarrow pedestal to sep ratios of Z_{eff} and n_{imp} remain the same within 5 – 10%

- Small impact on the ratio of separatrix to pedestal values
- However, <u>strong impact</u> on the ratio of mean SOL and pedestal values ⇒ Next slide

In HT3R, no change in Z_{eff}-ratios. However, the n_{imp} ratios (with N-injection) shift to larger values

 However, similar to HTVT, the most significant impact of multiplying the D_{ETB+SOL} is seen in the mean SOL vs. pedestal values ⇒ next slide

Predicted LFS mid-plane profiles for the Nrad = 3 MW simulation case, show...

- Increase of SOL impurity densities and Z_eff values, and reduction of the associated values inside the separatrix
- Expected result when increasing diffusive transport across the separatrix and SOL

Aaro Järvinen | The name of the meeting should appear here | The date of meeting should appear here | Page 17

Along the LCFS, Z_{eff} is predicted to peak in the region above and around LFS mid-plane

- n_e predicted to peak close to X-point Proximity of the divertor neutral source
- Pressure conserved ⇒ Temperature gradient along LCFS ⇒ Ion temperature gradient force pushes impurities towards mid-plane and above
- Low flow velocities (M < 0.1) inside the separatrix ⇒ low frictional drag on the impurity ions ⇒accumulation of impurities at around mid-plane and above

Nitrogen density profiles predicted to peak in the region above and around mid-plane

Aaro Järvinen | The name of the meeting should appear here | The date of meeting should appear here | Page 20

Strong poloidal asymmetries are only present close to the LCFS, where the 2-D neutral ionization distribution drives n_e/T_e/T_i asymmetries leading to temperature gradient forces and impurity accumulation around the upper half of the poloidal cross section.